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Abstract

The progression of HIV infection to AIDS is unclear and under examined.
Many mechanisms have been proposed. That includes a decline in immune
response, increase in replication rate, involution of the thymus, syncytium in-
ducing capacity, activation of the latently infected cell pool, chronic activation
of the immune system, and the ability of the virus to infect other immune sys-
tem cells. But their significance is unknown. We develop a simple HIV viral
dynamics model incorporating proposed mechanisms as parameters. The con-
ditions for backward and forward bifurcations are derived in the entire param-
eter space. Detailed relations between model parameters and output behaviors
are revealed through a global uncertainty and sensitivity analysis, and further
through 1- and 2-parameter bifurcation analysis. Our results indicate that the
progression is mainly contributed by changes in characteristics of the produc-
tively and latently infected CD4 T-cell pools, the production of free virus from
other cells pools, and immune system exhaustion.

Keyworks: HIV progression, numerical bifurcation analysis, global uncertainty,
and sensitivity analysis

1 Introduction

HIV can infect all cells in the immune system and the central nervous system which
have a CD4 receptor on the cell surface, including T helper cells, monocytes, macrophages,
and dendritic cells. However, the main target of the HIV virus is the CD4 T-helper
lymphocyte, the main driver of the immune response. A large reduction in the num-
ber of CD4 T-helper cells seriously weakens the immune system, affecting the ability
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to fight opportunistic diseases. When the CD4 T-cell count reaches a measurement
below 200 cells per microlitre of blood, a patient is diagnosed with AIDS. Treat-
ment with antiviral therapy can delay the onset of AIDS, but this depends on drug
adherence and the evolution of drug resistance.

The progression of HIV to AIDS is marked by a decrease in the CD4 T-cell count,
and an increase in the viral load. The mechanism by which HIV infection transforms
into AIDS is unclear (Cloyd et al, 2000). Several factors such as a decline in immune
response (Feinberg and McLean, 1997; Dubrow et al, 2012), increase in replication rate
(Biesinger and Kimata, 2008; Langford et al, 2007; Selhorst et al, 2017), involution of
the thymus (Ye et al, 2004; Beltz, 1999), syncytium inducing capacity (Feinberg and
McLean, 1997; Kwa et al, 2001), activation of the latently infected cell pool (Grossman
et al, 1998; Dahabieh et al, 2015; Rong and Perelson, 2009; Chun et al, 1998; Ruelas
and Greene, 2013; Callaway and Perelson, 2002), chronic activation of the immune
system (Paiardini and Müller-Trutwin, 2013; Klatt et al, 2013; Sereti and Altfeld,
2016; Hsu and Sereti, 2014; Hazenberg et al, 2003), and the ability of the virus to
infect other immune system cells (Orenstein et al, 1997; Vazeux et al, 1987; Till et al,
1988; Cunningham et al, 2010) have been associated with HIV progression to AIDS.
However, it is not known what factors most drive disease progression. Mathematical
modeling is well suited to provide insight into this complex process (Anderson and
May, 1992; Murray et al, 1989; Nowak and May, 2000).

Mathematical modeling studies of HIV infection in-host are abundant in the lit-
erature. The vast majority of these studies, however, focus on the acute and latent
stages of infection. Mathematical models of HIV progression to AIDS are presented
by Wodarz and Nowak (2002),Alizon and Magnus (2012), Fraser et al (2014), and
Culshaw (2006). While these models have been successful in presenting T-cell count
and viral load curves which demonstrate HIV progression to AIDS, these studies have
fallen short of determining what characteristics of the underlying biology most drive
the decline in CD4 T-cells and increase in viral load. This may be due to the fact
that many of these studies include models composed of a large number of equations,
making model analysis very difficult. The majority of these studies also include a
large number of unknown parameters, therefore identifying model parameters linked
to specific biological processes which drive HIV progression can be difficult.

We have developed a mathematical model of HIV infection in-host progression
to AIDS consisting of three ordinary differential equations. The model includes the
effects of thymic involution, density dependent proliferation of CD4 T-cells, and a
growth term in the productively infected cell pool signifying the addition of infected
cells from other infected cell pools including the latently infected cell pool. The model
is presented in Section 2. Most of the analytical results are presented in Section 3.
The basic reproduction number R0 is derived in different approaches and proved
equivalent. The conditions for the occurrence of backward and forward bifurcations
are derived on the 1-dimensional center manifold when R0 = 1. Sensitivity analysis
and bifurcation analysis on the endemic equilibrium are presented in Section 4. Fi-
nally, in Section 5 we discuss our results and identify what model parameters most
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affect disease progression from HIV to AIDS through numerical bifurcation analysis.

2 Model

The model consists of three ordinary differential equations describing the uninfected
and productively infected target cell populations, and the infectious HIV viral load.
The model represents a simple extension from the basic model of virus dynamics by
Nowak and May (2000), including density dependent proliferation of the T-cells, and
time dependent production rates of the target cells. We let x, y, and v respectively
represent the number of uninfected T-cells, infected T-cells, and infectious virus par-
ticles at time t. The model is as follows:

dx

dt
=

λ

v + ε
− dx − βxv + px

(
1 − x+ y

T

)
dy

dt
= βxv + ry

(
1 − x+ y

T

)
− ay

dv

dt
= kqy − uv − βxv .

(1)

All parameters are nonnegative. We assume that they are nonzero unless explicitly
stated otherwise. We now describe each equation in more detail:

Equation for x: CD4 T-cells are produced by the thymus. It is assumed that the
production of these cells depends on the HIV infection, where thymocyte infec-
tion occurring during HIV infection induces involution of the thymus (Ye et al,
2004; Beltz, 1999). Therefore, we will exam the influence of the parameter λ on
model behavior to represent that CD4 T-cell production decreases as the viral
load increases, in the term λ/(v + ε), where ε represents a saturating value,
and is used to implement biological factors associated with the immune system.
For example, HIV induced involution of the thymus will not occur immedi-
ately upon infection with the HIV virus (G Meissner et al, 2003). To maintain
homeostasis in T-cell count in uninfected hosts, T-cells must proliferate to ac-
count for the decreasing thymic production (homeostatic proliferation) (Surh
and Sprent, 2000). This is represented using density dependent proliferation
where T is the carrying capacity and p the proliferation rate. Immune system
exhaustion is also represented in this term, since as the infected population in-
creases, the healthy T-cell population will be negatively affected. Similar to the
basic model of virus dynamics, uninfected cells either die (rate d) or become
infected by HIV virus (βxv).

Equation for y: Productively infected CD4 T-cells are produced by infection of un-
infected T-cells by virus (βxv). We also assume that these cells can proliferate
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(Chomont et al, 2009) at a rate of r. The proliferation process is modeled by
the logistic term ry(1− (x+ y)/T ). Infected cells die at a rate of a. Note that
this model is similar to a model presented by Rong and Perelson (2009), where
the latently infected cell pool was considered.

Equation for v: Infectious virus particles are produced from productively infected
CD4 T cells and from other types of productively infected cells including mono-
cytes, macrophages and dendritic cells (Van Lint et al, 2013; Chomarat et al,
2003). The production of infectious free virus is represented as kq where k is the
number of infectious virions produced by a productively infected CD4 T-cell,
and q gives the ratio of the total infected cell pool including CD4 T-cells, mono-
cytes, macrophages and dendritic cells to the productively infected CD4 T-cell
pool. Thus, when q = 1 only productively infected T-cells produce virus, but as
q increases, the production of virus becomes more dependent on productively
infected cells of other cell types (Koppensteiner et al, 2012). This allows us to
account for a shift in infection to monocytes, dendritic cells and macrophages
when there is a limited pool of CD4 T-cells to infect (Ginhoux and Jung, 2014).
Note that we have elected not to explicitly model these cell types so as to make
the analysis of the model feasible. Infectious virus is lost due to the infection
of an uninfected cell (βxv), or is cleared by the immune system (uv). We note
that the loss of virus particles in the infection process is ignored in the vast
majority of models of HIV infection in-host. However, it has been found that
this term can play a role in the infection dynamics (Klasse, 2015; Heffernan and
Wahl, 2006b), T-cell count and viral load (Bocharov and Romanyukha, 1994;
Hancioglu et al, 2007; Heffernan and Keeling, 2008). Therefore, this term may
be important in studying the progression to AIDS.

In the progression of HIV to AIDS changes in a few, or many, of the model param-
eters may be involved. For example, a decrease in the production of the CD4 T-cell
(λ), which represents an aging thymus, or thymic involution, may contribute. Also,
it is possible that a change in the death rate of infected cells (a), in the clearance
rate of the virus (u), in the production the infected cells (r), or in the production of
infectious virus particles (k) may affect disease progression. A shift from the infec-
tion of CD4 T-cells to monocytes, macrophages and dendritic cells will also play a
role (q). We therefore assume that all model parameters may change slowly with the
progression of the infection. This assumption allows us to study the key underlying
mechanisms related to HIV progression to AIDS. We formulate an autonomous dif-
ferential equations model with parameter values varying in feasible ranges. Below,
we provide analytical and numerical methods that aid in determining key parameters
related to this progression process.
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3 Analytical Results

3.1 Analysis on Model Solutions

3.1.1 Well-posedness of the Solutions of the System (1)

We first remark that Equation (1) is reasonable in the sense that no population size
can be negative, and no population grows unbounded. For this well-posed problem,
we first prove the positivity and then further show boundedness of the solutions of
the model (1).

Lemma 3.1 (Thieme (2003), Theorem A.4) Let Rn
+ = [0, +∞)n be the cone of

nonnegative vectors in Rn and F : Rn+1
+ → Rn be locally Lipschitz, F (t, x) =

(F1 (t, x) , . . . , Fn (t, x)) and x = (x1, . . . , xn), and satisfy Fj (t, x) ≥ 0 whenever t ≥
0, x ∈ Rn

+, xj = 0. Then, for every initial condition x0 ∈ Rn
+, there exists a unique

solution of x′ = F (t, x), x(0) = x0, with values in Rn
+, which is defined on some

interval [0, b), b > 0. If b <∞, then lim supt↗b
∑n

j=1 xj(t) =∞.

Theorem 3.1 Assume that the initial conditions for the system (1) are non-negative.
Then the solution of (1) exists and is nonnegative for all t ∈ [0,∞). Furthermore,
the solution is unique and bounded.

Proof 3.1 We shall apply Lemma 3.1. For (x, y, v) ∈ R3
+, we obtain

dx

dt
(0, y, v) =

λ

v + ε
> 0,

dy

dt
(x, 0, v) = βxv ≥ 0, and

dv

dt
(x, y, 0) = kqy ≥ 0.

The nonnegativity of the solutions follows. Next, we prove that every nonnegative
solution of model (1) is attracted to the bounded set{

(x, y, v) ∈ R3
+ |x+ y < B + 1, v <

kq(B + 1)

u
+ 1

}
, where

B =
1

d∗

(
(p+ r)T

4
+
λ

ε

)
and d∗ = min {d, a} ,

and hence that b =∞. Using the elementary inequality z(1− z/T ) ≤ T/4, we have

d(x+ y)

dt
=

λ

v + ε
− dx+ px

(
1− x+ y

T

)
+ ry

(
1− x+ y

T

)
− ay

≤ − d∗(x+ y) +
(p+ r)T

4
+
λ

ε
,

from which we obtain lim supt→+∞(x+ y) ≤ B.
As to the virus population, we obtain for large t that

dv

dt
= kqy − uv − βxv ≤ kqy − uv ≤ k q (B + 1)− u v,

from which it follows that lim supt→+∞ v(t) ≤ kq(B + 1)/u. The proof is finished.
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3.1.2 Steady States

To get the equilibrium solutions of model (1), we set the right sides of the three
equations equal to zero as follows:

f1 =
λ

v + ε
− dx − βxv + px

(
1 − x+ y

T

)
= 0,

f2 = βxv + ry
(
1 − x+y

T

)
− ay = 0,

f3 = kqy − uv − βxv = 0.

(2)

Firstly, the third equation in (2) gives

y =

(
u+ βx

kq

)
v (3)

Then we substitute Eqn (3) for v in the second equation in Eqn (2) and obtain

y

[
βx

kq

u+ βx
+ r

(
1− x+ y

T

)
− a
]

= 0. (4)

The first factor from Eqn (4) gives a disease-free equilibrium (DFE), E0 = (x0, 0, 0).
Here, x0 is the non-negative root of

p

T
x2 + (d− p)x − λ

ε
= 0 . (5)

Since all parameter values are taken positive, there is a unique positive root of Eqn
(5), namely

x0 =
p− d+

√
(p− d)2 + 4pλ/Tε

2p/T
. (6)

The second factor from Eqn (4), considering (3), yields v as a function of x, denoted

V (x) =

(
1 − a

r
− x

T
+

kqβx

r(u+ βx)

)
kqT

(u+ βx)
. (7)

Moreover, assuming that y > 0 and v > 0, we can rewrite the second equation of (2)
as

1 − x+ y

T
=

a

r
− βxv

ry
=

a

r
− βkqx

r(u+ βx)
.

Substituting this into the first equation of (2) shows that any infected equilibrium
(x, y, v) must satisfy λ = H(x), where we define

H(x) =

[
dx + βxV (x) +

px

r

(
βqkx

u+ βx
− a

)]
(V (x) + ε) . (8)

We conclude that the following assertions hold for any given positive parameter
values.
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(a) Every infected equilibrium is of the form

(x, y, v) =

(
x,

(
u+ βx

kq

)
V (x), V (x)

)
, (9)

and satisfies the equation λ = H(x).

(b) Conversely, if x > 0, V (x) > 0, and λ = H(x), then the point given by Equation
(9) is an infected equilibrium.

We remark that, given its importance here, λ will be a parameter for further
investigation.

3.2 The Basic Reproductive Ratio R0

The basic reproductive ratio R0 is defined to be the number of infected cells (or
virions) produced by a single infected cell (or virion) when introduced into a totaly
susceptible population of target cells (i.e., the DFE E0 : (x0, 0, 0)). In the present
case, two different expressions for R0 can result, depending on whether infected cells
or virions are considered; however, the threshold condition “R0 > 1” for instability
of the DFE is valid for both expressions.

3.2.1 Deriving R0 from a Single Infected Cell Gives Ry
0

First, we consider Ry
0, the number of “next generation” infected cells produced by a

single infected cell introduced at the DFE. There are two ways that an infected cell
can give rise to new infected cells: (i) by cellular proliferation, and (ii) by producing
infectious virions which then infect uninfected cells. For (i), a single infected cell
proliferates at rate r(1−x0/T ); since the typical lifetime of an infected cell is 1/a, we
see that a single infected cell produces a total of r(1− x0/T )/a new infected cells by
proliferation. For (ii), a single infected cell produces a total of kq/a infectious virions
during its lifetime, and each of these infectious virions has probability βx0/(u+ βx0)
of infecting a healthy cell before the virion dies. Therefore, we obtain

Ry
0 =

r

a

(
1− x0

T

)
+
kq

a

βx0
u+ βx0

. (10)

Ry
0 > 1 is the threshold of the emergence of the infected equilibrium E1. Note that if

r = 0, then Ry
0 is similar to definitions of R0 found in previous studies which include

the viral loss due to infection in the virus equation in Equation (1) Heffernan and
Wahl (2006a); Heffernan and Keeling (2008); Heffernan and Wahl (2006b).

3.2.2 Deriving R0 from a Virion Gives Rv
0

Next we consider Rv
0, the number of “next generation” infectious virions produced

by a single infectious virion introduced at the DFE. This is more subtle, because we
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need to count possibilities, such as, a virion (called v1, say) infecting a cell (called c1),
which proliferates to create a new infected cell (c2), which in turn proliferates to create
a new cell (c3), and this cell c3 produces a new virion v2. Although the line from v1 to
v2 involves several generations of infected cells, it does not involve any other virions;
in that sense, we consider virion v2 to be part of the “next generation” of virions
produced by virion v1. Following this understanding, we define the quantity Ny to be
the total number of infected cells descended from a single infected cell by proliferation
only (i.e. over all generations but excluding any new infections by virions), including
the initial infected cell. If r = 0, then Ny = 1. If r > 0, then Ny satisfies the equation

Ny = 1 +
r
(
1− x0

T

)
a

Ny (11)

because 1 represents the initial cell and r(1 − x0/T )/a represents the number of
first-generation offspring of a single infected cell during its lifetime (as argued for Ry

0

above), and each of those first-generation offspring produces a total progeny of Ny

over all generations by proliferation alone.
Since the number of infected cells is negligible in this scenario, we only include

the uninfected cells x0 in the density dependence term r(1− x0/T )/a.
Observe that if a ≤ r

(
1− x0

T

)
, then the only nonnegative solution of Eqn (11)

is Ny = +∞. This makes sense because the inequality a < r
(
1− x0

T

)
tells us that

when y is small, the death rate of an infected cell is less than its proliferation rate,
and so the number of infected cells increases. Thus, the population of infected cells
will never die out, even if the immune system is 100% effective at immediately killing
all free virions; hence Ny is infinite. In contrast, if a > r

(
1− x0

T

)
, then we can solve

Eqn (11) to obtain the finite value

Ny =
a

a− r
(
1− x0

T

) . (12)

Finally, we have

Rv
0 =

βx0
u+ βx0

kq

a
Ny =

βx0
u+ βx0

kq

a− r
(
1− x0

T

) , (13)

where we should interpret the final expression to be +∞ if it is negative or unde-
fined. Eqn (13) arises because each infectious virion has probability βx0/(u + βx0)
of infecting a new cell, which in turn would produce a total of Ny infected cells by
proliferation alone, and each of these infected cells would produce kq/a infectious
virions. With this interpretation, we easily see that Rv

0 > 1 if and only if Ry
0 > 1.

Note again that, if r = 0 at the beginning of infection, Eqn (13) is similar to
definitions of R0 found in previous studies which include the viral loss due to infection
in the virus equation in Equation (1) in Heffernan and Wahl (2006a); Heffernan and
Keeling (2008); Heffernan and Wahl (2006b).

Given the relationship of parameters a and r discussed above, we mark these
parameters for further investigation later in this study.
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3.2.3 Deriving R0 from the next generation matrix

Infection process from uninfected (x) to infected (y) cell groups and emission of new
viruses (v) from infected cells (y) are considered to be new infections. Then rates of
appearance of new infection and rates of transferring between groups are

F =

β x vk q y
0

 , V =

 −r y
(
1 − x+y

T

)
+ a y

u v + β x v
λ

v + ε
+ d x + β x v − p x

(
1 − x+y

T

)
 .

Their derivatives evaluated at E0 = (x0, 0, 0) take the partition forms as

DF|E0 =

[
F 0
0 0

]
, DV|E0 =

[
V 0
J3 J4

]
, where F =

[
0 β x0
k q 0

]
, V =

[
−r
(

1− x0
T

)
+ a 0

0 β x0 + u

]
,

J3 =

[
p x0
T

λ

ε2
+ β x0

]
, J4 = d− p

(
1− x0

T

)
+
p x0
T
.

Then the spectral radius of the next generation matrix FV −1 is the basic reproduction
number

R0 = ρ(FV −1) = ρ


 0

β x0
β x0 + u

k q T

T (a− r) + r x0
0


 =

√
βx0

βx0 + u
· kq

a− r + rx0/T
.

(14)
It is easy to see that the basic reproduction number is the square root of the product of
the probability of a single infectious virion infecting a new cell and the probability of
a single infected cell generating new infectious viruses after infected cell proliferation.

3.3 Linear Analysis for DFE (E0)

Regarding model (1), the Jacobian matrix associated with its linearized system eval-
uated at E0 = (x0, 0, 0) takes the form:

J0 =

(p− d)− 2 p
T
x0 − p

T
x0 (−β x0 − λ

ε2

0 (r − a)− r
T
x0 β x0

0 k q −β x0 − u

 (15)

Its corresponding characteristic polynomial takes the form:

P (L) = det [LI3×3 − J0] = (L+ a00)
(
L2 + a01L+ a02

)
, where a00 = d− p+

2px0
T

,

a01 = a− r + u+ x0
(
r
T

+ β
)
, a02 =

βrx20
T

+
[
ru
T

+ (a− r − kq)β
]
x0 + (a− r)u .

(16)
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Considering positive values of all parameters and x0 (that is x0 > T (p− d)/(2p)),
we obtain a00 = d− p+ 2px̄0/T > 0. we also have a01 > 0 if a > r(1− x0

T
), assuming

that infected cell population dying out is possible. Thus, the first factor of (16) gives
a negative real root (or eigenvalue). The roots from the quadratic second factor of

(16) take the form L1, 2 = 1
2

(
−a01 ±

√
a201 − 4a02

)
. To determine the sign of the real

part of L1 and L2, we have the following result.

Lemma 3.2 If a01 ≤ 0, then a02 < 0. Equivalently, if a02 ≥ 0, then a01 > 0.

Proof 3.2 We rewrite a02 in (16) as

a02 = (r x0/T + a− r)(β x0 + u)− βkqx0 (17)

= [a01 − (βx0 + u)] (βx0 + u)− βkqx0 ,

from which the lemma is immediate.

Lemma 3.3 The three roots of the characteristic polynomial P (L)|E0 = 0 in Eqn
(12) are as follows:
• If a02 > 0: three negative real roots, or one negative real root and a pair of complex
conjugate roots with negative real parts;
• If a02 = 0: two negative real roots and one zero root;
• If a02 < 0: one positive and two negative real roots.
In particular, no root can be purely imaginary.

Proof 3.3 Since the characteristic equation in (16) has one negative root and the other
parameters satisfy Lemma 3.2, the proof is obvious.

Theorem 3.2 The DFE, E0 = (x0, 0, 0), is a stable node if a02 > 0, and it is
a saddle with 1-dimensional unstable manifold and 2-dimensional stable manifold
if a02 < 0. Moreover, when a02 = 0, E0 undergoes a static bifurcation with 1-
dimensional center manifold and 2-dimensional stable manifold. Hopf bifurcation
does not occur on E0.

Proof 3.4 The occurrence of the Hopf bifurcation requires a pair of complex conjugate
eigenvalues, which are from the second factor of P (L)|E0 = 0 and require the co-
occurrence of a01 = 0 and a02 > 0. This cannot occur according to Lemma 3.3.
The first factor with a00 > 0 yields a negative root. The other results are derived
immediately from Lemma 3.2.

Since the solution of the model (1) is wellposed, it stays positive as t → ∞.
Due to the fact that the DFE is located on the x-axis, no periodic solution encloses

the DFE E0.

Theorem 3.3 Ry
0 = 1, Rv

0 = 1, R0 = 1, and a02 = 0 are three equivalent thresholds
to determine the stability of the DFE.
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Proof 3.5 The condition for stable equilibrium E0 is

a02 > 0 ⇔ a− r
(

1− x0
T

)
>

βx0
u+ βx0

kq ⇔ Rv
0 < 1 ⇔ Ry

0 < 1.

Similar argument proves that the condition for an unstable equilibrium E0 is a02 <
0 ⇔ Rv

0 > 1 ⇔ Ry
0 > 1 and the static bifurcation condition is equivalent to the two

thresholds, that is a02 = 0 ⇔ Rv
0 = 1 ⇔ Ry

0 = 1 ⇔ R0 = 1.

3.4 Nonlinear Analysis for DFE (E0)

The Jacobian matrix of the DFE is given as J0 in (15). Theorem 3.2 indicates that
the DFE has a zero eigenvalue when a02 = 0 (or R0 = 1), which is equivalent to

β = − ((a− r)T + rx0)u

x0((a− r − kq)T + rx0)
, βT (18)

The other two eigenvalues, −a00 and −a01 in (16), are both negative. We choose right
and left nullvectors corresponding to the zero eigenvalues as

v =

(
−x1(TβTkq + βTpx0 + pu)ε2 − Tkqλ

((d− p)T + 2px0)kqε2
,
βTx0 + u

kq
, 1

)tr
, w = (0, w2, w3) ;

w2 = (1 +
u

βTx0
)w3, w3 =

βTkqx0
β2
Tx

2
0 + 2βT (u+ kq/2)x0 + u2

.

(19)
Moreover, the inner product, < ·, · >, of column and row vectors (v and u) is one,
that is < w, v >= 1. Let

B = w


∂2f1
∂x∂β

∂2f1
∂y∂β

∂2f1
∂v∂β

∂2f2
∂x∂β

∂2f2
∂y∂β

∂2f2
∂v∂β

∂2f3
∂x∂β

∂2f3
∂y∂β

∂2f3
∂v∂β


E0

v = w

0 0 −x0
0 0 x0
0 0 −x0

 v
= (1− (a− r)T + rx0

Tkq
)w2x0 =

x0kqu

β2
Tx

2
0 + 2(u+ kq/2)βTx0 + u2

> 0,

(20)
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for all positive parameter values and positive disease free equilibrium; and

A =
w

2
(DxxJ0)v

2 =
1

2
< w, (DxxJ0)v

2 >=
1

2
< w,

< v,Dxx1v >
< v,Dxx2 v >
< v,Dxx3 v >

 >,
=

1

2

(
(1 +

u

βTx0
) < v,Dxx2v > + < v,Dxx3v >

)
w3, where,

< v,Dxx2 v > =
1

((d− p)T + 2px0)Tε2kq2
[−2βTkq

2(βT ε
2x0 + λ)T 2

+2(βTx0 + u)(−((d− p− kq)r + pkq)βT ε
2x0 − ru(d− p)ε2 + rλkq)T

−2prx0ε
2(βTx0 + u)2)],

< v,Dxx3 v > = 2βT
(TβTkq + βTpx0 + pu)ε2x0 + Tkqλ

((d− p)T + 2px0)ε2kq
.

Here, Dxxi =


∂2fi
∂x∂x

∂2fi
∂x∂y

∂2fi
∂x∂z

∂2fi
∂y∂x

∂2fi
∂y∂y

∂2fi
∂y∂z

∂2fi
∂z∂x

∂2fi
∂z∂y

∂2fi
∂z∂z

,

 for i = 1, 2, 3, then

Dxx1 =

−2 p
T
− p
T
−βT

− p
T

0 0
−βT 0 2 λ

ε3

 , Dxx2 =

 0 − r
T

βT
− r
T
−2 r

T
0

βT 0 0

 , Dxx3 =

 0 0 −βT
0 0 0
−βT 0 0

 .
(21)

Therefore, A and B in (20) and (21) are coefficients of the center manifold of model
(1) at the DFE E0 when R0 = 1. The center manifold upto third order is written as

u̇ = Au2 + B uµ + O(3),

Applying the results from Van den Driessche and Watmough (2002) and Castillo-
Chavez and Song (2004), we have

Theorem 3.4 when R0 = 1 or β = βT , model (1) at the DFE E0 exhibits a backward
(forward) bifurcation if A > 0 (A < 0).

4 Uncertainty and Sensitivity Analysis

In the previous analysis we identified three parameters that were critical to deter-
mining the existence of the infected equilibrium and the stability of the disease-free
equilibrium, namely, λ, r, and a. In the following we determine how changes in these
parameters affect the infected equilibrium.

12



-1 -0.5 0 0.5 1

p

r

T

d

a

kq

u

PRCC with respect to x

-1 -0.5 0 0.5 1

p

r

T

d

a

kq

u

PRCC with respect to v

-1 -0.5 0 0.5 1

p

r

T

d

a

kq

u

PRCC with respect to x+y

-1 -0.5 0 0.5 1

p

r

T

d

a

kq

u

PRCC with respect to v/y

Figure 1: Partial Rank Correlation Coefficients. Parameters: r, a, u, T , β and kq
significantly affect the disease progression.

Suppose that we want to say how a stable infected equilibrium changes as one pa-
rameter varies, with all other parameters being held constant. For example, Theorem
4.1(i) below says that the x-coordinate of the fixed point is an increasing function
of λ. Before we state the results formally, we shall show that the Implicit Function
Theorem guarantees that slightly varying a single parameter leads to a differentiable
curve of stable fixed points passing through a given stable infected equilibrium.

Suppose (x0, y0, v0) is a stable infected equilibrium corresponding to a particular
choice of strictly positive parameter values (λ0, ε0, d0, β0, . . .). (Observe that x0, y0,
and v0 are necessarily strictly positive.) We shall focus on λ for concreteness, but the
same argument works for any parameter. Define the function G : (0,∞)4 → R3 by

G(x, y, v, λ) =


λ

v+ε0
− d0x − β0xv + p0x

(
1 − x+y

T0

)
β0xv + r0y

(
1 − x+y

T0

)
− a0y

k0q0y − u0v − β0xv

 . (22)

Then the fixed point equations used to determine the solutions to (2) are equivalent
to writing G = 0. Write the 3× 4 derivative matrix DG in the block form

DG(x, y, v, λ) = (J |w)

where J is the 3× 3 Jacobian matrix (15) (except that now we treat λ as a variable)
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and w is the column vector

w =

 ∂G1

∂λ
∂G2

∂λ
∂G3

∂λ

 =

 1
v+ε0

0
0

 . (23)

By our definition of stability, det(J) < 0 at this equilibrium. Thus the Implicit
Function Theorem guarantees the existence of a δ > 0 and a continuously differen-
tiable function Φ : (λ0 − δ, λ0 + δ) → (0,∞)3 such that Φ(λ0) = (x0, y0, v0) and
the equation G(Φ(λ), λ) = 0 holds for every λ ∈ (λ0 − δ, λ0 + δ), where we write
Φ(λ) = (x(λ), y(λ), v(λ)); that is, Φ(λ) is a curve of fixed points parametrized by λ.
Since the eigenvalues are continuous functions of the coefficients of the characteristic
polynomial (e.g. see Theorem 1.4 of Marden (1989)), we can choose δ small enough
so that the fixed point Φ(λ) is stable for every λ in (λ0− δ, λ0 + δ). In particular, the
derivatives in the following theorem all exist, and we can safely interpret dx

dλ
(λ0), for

example, to be the rate of change of x with respect to λ at the fixed point (x0, y0, v0).

Theorem 4.1 At every stable infected equilibrium (x, y, v) with strictly positive pa-
rameter values, we have
(i) dx/dλ > 0,
(ii) d(x+ y)/dλ > 0,
(iii) d(v/y)/dλ < 0,
(iv) dx/da > 0,
(v) dv/da < 0,
(vi) d(v/y)/da < 0,
(vii) sgn(dx/dr) = sgn(x+ y − T ),
(viii) sgn(dv/dr) = −sgn(x+ y − T ), and
(ix) sgn(d(v/y)/dr) = −sgn(x+ y − T ).

Proof: We first consider varying λ. Differentiating the equation G(Φ(λ), λ) = 0
with respect to λ gives J(dΦ/dλ) + w = 0 (where we write dΦ/dλ as a 3× 1 column
matrix), or equivalently

dΦ

dλ
= − J−1w . (24)

Let Kij be the ij entry of J−1. Then Equations (23–24) show that (omitting the 0
subscripts on the parameters)

dx

dλ
= − K11

v + ε
,

dy

dλ
= − K21

v + ε
,

dv

dλ
= − K31

v + ε
. (25)

Writing Jij as the ij entry of J , matrix algebra says that

K11 =
J22J33 − J23J32

det(J)
, K21 =

J23J31 − J21J33
det(J)

, K31 =
J21J32 − J31J22

det(J)
. (26)
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At an equilibrium point, the diagonal elements of J given in Eqn (15) can be
rewritten as follows. Using the first equation of Eqn (2), we obtain

J11 =
1

x

(
−dx− βxv + px

(
1− x+ y

T

))
− px

T

= − λ

x(v + ε)
− px

T
if x > 0. (27)

From the second equation of Eqn (2), we obtain

J22 =
1

y

(
ry

(
1− x+ y

T

)
− ay

)
− ry

T

= − βxv
y
− ry

T
if y > 0. (28)

And using the last equation of Eqn (2), we obtain

J33 = −βx− u = − kqy
v

if v > 0. (29)

By Equations (25) and (26), together with (28), (29), and Eqn (15),

dx

dλ
= −

(
−βxv

y
− ry

T

) (
− kqy

v

)
− βxkq

(v + ε) det(J)
= − ry2kq

Tv(v + ε) det(J)
, (30)

assuming that x, y, and v are all nonzero. In addition, if (x, y, v) is a stable equilib-
rium, then det(J) < 0, and we see that dx/dλ > 0. This proves (i).

By Equations (25), (26), and Eqn (15),

dy

dλ
= −

(
βx(−βv) −

(
βv − ry

T

)
(−u− βx)

)
(v + ε) det(J)

=
β2xv − βvu − β2xv + ry

T
(u+ βx)

(v + ε) det(J)

=
− βvu + ry2kq

Tv

(v + ε) det(J)
(by (29)) . (31)

Adding Equations (31) and (30) gives

d(x+ y)

dλ
=

− βvu
(v + ε) det(J)

which is positive whenever (x, y, v) is a stable infected equilibrium. This proves (ii).
The proofs for varying a and r are very similar to the arguments for λ, with the

following differences. The vector w is now ∂G1

∂a
∂G2

∂a
∂G3

∂a

 =

 0
−y
0

 or

 ∂G1

∂r
∂G2

∂r
∂G3

∂r

 =

 0
y
(
1− x+y

T

)
0

 .
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The resulting analogues of Equation (25) are

dx

da
= K12 y ,

dv

da
= K32 y ,

dx

dr
= −K12 y

(
1− x+ y

T

)
,

dv

dr
= −K32 y

(
1− x+ y

T

)
.

We then have from Eqn (15) that

K12 =
J13J32 − J12J33

det(J)
=
−(βx+ λ/(v + ε)2)kq − px

T
(u+ βx)

det(J)
,

which has negative numerator and denominator, and, with the help of Equation (27),

K32 =
J12J31 − J11J32

det(J)
=

px
T
βxv +

(
λ

(v+ε)x
+ px

T

)
kq

det(J)
,

which has positive numerator and negative denominator. These suffice to explain
parts (iv), (v), (vii), and (vii).

Finally, parts (iii), (vi), and (ix) follow from the relation v/y = kq/(u + βx)
(from the fixed point equations of (2)) and parts (i), (iv), and (vii). �

The progression of HIV to AIDS is marked by a decrease in the CD4 T-cell count
and an increase in the viral load. The results of Theorem 4.1 show that decreases in
CD4 T-cell count are feasible when λ is reduced, a is increased, and if r is increased
(but only if sgn(x+y+T ) < 0). These results also show that the viral load increases
when a is decreased and r is increased (but only if sgn(x+ y + T ) < 0).

We now further explore the change in the infected equilibrium with respect to all
parameter values, using uncertainty and sensitivity analysis. We conduct uncertainty
and sensitivity analysis using Latin Hypercube Sampling (LHS) in McKay et al (1979)
and Partial Rank Correlation Coefficients (PRCC) in Anderson (1958). LHS gives
adequate quality assurance on model predictions, and PRCC determines the main
parameters driving infection.

We perform LHS, using the numerical algorithm described in Marino et al (2008).
To perform the LHS method, in the absence of the prior data, we adopt uniform
distributions for model parameters using informed parameter value ranges from the
modelling and clinical literature (see Table 3). Values were chosen randomly without
replacement, and parameter sets that satisfied four filter conditions that ensure that
the model equilibria lie within realistic HIV/AIDS ranges were recorded (see Table
1). Following this procedure a PRCC value was calculated for each model param-
eter. PRCC values range between -1 and 1 with the sign determining whether an
increase in the parameter value will decrease (-) or increase (+) the specified model
output. A PRCC value |PRCC| > 0.5 was considered statistically significant based
on empirical knowledge. We chose 100, 000 parameter sets and 910 of these satisfied
the filter criteria (Table 1). Finally, within the 910 parameter sets 6 parameter sets
produced oscillating simulated solutions for Equation (1), indicating the existence of
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a Hopf bifurcation in realistic parameter space. The occurrence of periodic solutions
agree with the result from Zhang et al (2016) that backward bifurcation implies rich
dynamical behaviors.

The PRCC values relating the model parameters to the infected equilibrium are
shown in Figure 1. It shows that parameters: r, a, u, T , β and k q significantly
affect disease progression. This result confirms the parameters which influence the
basic reproduction number R0. This figure also demonstrates that changes in λ
(the production rate of CD4 T-cells) are not significant, whereas, changes in r (the
proliferation rate and addition of infected monocytes, macrophages, dendritic cells
and activation of latently infected cells) and a (the efficacy of the immune system in
killing infected cells) are. It is also shown that changes in other model parameters
can have significant effects on the infected equilibrium. In total, the results of the
sensitivity analysis show that a reduction in the total CD4 T-cell count x + y can
occur as the infected cell death rate a increases and proliferation and/or addition to
the infected cell pool r increases. It also shows that an increase in the viral load
v can occur when the viral clearance rate u decreases, the viral production rate kq
increases, the infected cell death rate a decreases, and proliferation and/or addition
to the infected cell pool r increases. Comparing these results, we find that the CD4
T-cell count x + y will decrease and the viral load v will increase when the viral
clearance rate u decreases, and the viral production rate kq increases. Interestingly,
however, a decrease in the healthy CD4 T-cell count x and an increase in the viral load
v can occur when the viral clearance rate u decreases, viral production kq increases,
infected cell death rate a decreases (although this is not in the significant range of
the sensitivity analysis), and proliferation and/or addition to the infected cell pool r
increases. The influence of the infection rate β has direct implications on HIV drug
therapy, where the goal is to decrease viral load and increase the healthy CD4 T-cell
count. Here, we see that a reduction in β can increase x, however, we cannot conclude
any additional effects.

On the other hand, according (12) and (13), the relation between a and r is
important to determine the fate of the disease. Figure 1 shows that if the death rate
of infected cells (a) decreases, the uninfected CD4 T-cell count (x) will decrease, the
infectious viral load (v) will increase, and the ratio of infectious viral load to infected
cells (v/y) will increase. Finally, the PRCC results shows that as the proliferation
rate of infected target cells, activation of the latently infected cell pool, or infected
dendritic cells, monocytes and macrophages pools grow (these are all represented by
an increase in r), then the correlation between this parameter r and the uninfected
T-cell count (x), infectious free virus (v), and ratio of infectious free virus to infected
cell count (v/y) are all determined by the sign of the difference between the total
number of uninfected and infected T-cells (x+ y) and the carrying capacity (T ). The
magnitude of the correlation, however, was difficult to ascertain in the analysis.

To further compare the influence of any two out of the six parameters: r, a, u, T
, β and k q on the model behaviors and disease progression, bifurcation analyses are
carried out in the next subsection.
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5 Bifurcation Analysis on Infected Equilibrium E1

In this section, we will further investigate how the parameters r, kq, u, β and a af-
fect the disease progression through a bifurcation analysis of (1). Static bifurcation,
including saddle-node and transcritical bifurcations, and Hopf bifurcation are com-
puted through symbolic computation. We first evaluate the Jacobian matrix of (1)
at E1, which yields the corresponding characteristic polynomial:

P (L ; x, y, v) = det(LI − J |E1) = L3 + a1L
2 + a2L+ a3, where,

a1 = d+ a+ u− (p+ r)(1− x+ y

T
) +

1

T
(px+ ry) + β(v + x),

a2 = −(βx+ u)(C11 + C22)− C11C22 − βv
[
βx+

λ

(v + ε)2

]
+ p

x

T
(βv − ry

T
),

a3 =
[
C11C22 + (βv − ry

T
)p
x

T

]
(βx+ u) + (kqC11 − βvp

x

T
)βx,

+
[
(βv − ry

T
)kq + βvJ22

] [ λ

(v + ε)2
+ βx

]
,

C11 = −d− βv + p(1− x+ y

T
)− p x

T
,

C22 = r(1− x+ y

T
)− r y

T
− a,

(32)
where y and v take the form of (3) and (7) as

y =
(−βrx2 − (T (a− r − kq)β + ru)x− Tu(a− r)

r(βx+ u)
, v =

kqy

βx+ u
, (33)

and x is the positive roots of Eqn (34) as follows.

F (x) = c10x
5 + c11x

4 + c12x
3 + c13x

2 + c14x+ c15 = 0, where,
c10 = β3r(kq − βε) [kq(r − p) + ap− dr] ,
c11 = β2(Tβq3(p− 2r)k3 + (2(Taβ + ru)q2(r − p) + Tβq2r[(d+ p) + βε]− 2Tβq2r2) k2

+[Tβ (βεr(r − a) + pa2 + r[rd− a(d+ p)]) + 3ru(βε(p− r) + ap− dr)]qk,
+4βεru(dr − ap)− β2λr2),

c12 = β(T 2β2q4k4 + (2Tβ(r − a) + u(p− 2r))Tβq3k3,
+(T 2β2q2(r2 + a2) + 2Tβq2(r[β(εu− Ta) + u(d+ p)] + 2u[a(r − p)− r2]) + q2ru2(r − p))k2,
+3[Tβu(r − a)(βεr + dr − ap) + βεru2(p− r) + ru2(ap− dr)]qk,
+6βεru2(rd− ap)− 4β2λr2u),

c13 = u(2T 2β2q3(r − a)k3 + (2Tβ(r − a)2 + ru(βε+ d+ p) + 2u[a(r − p)− r2])q2βTk2,
+(3Tβqu[a2p+ dr2 + βεr(r − a)− ar(d+ p)] + qru2[ap− dr + βε(p− r)])k,
+4βεru2(dr − ap)− 6β2λr2u),

c14 = u2(T 2βk2q2(r − a)2 + Ta2kpqu+ Tkqru[βε(r − a) + dr − a(d+ p)],
+εru2(dr − ap)− 4βλr2u),

c15 = −λr2u4.
(34)
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Theorem 5.1 The endemic equilibrium E1 = (x, y, v) undergoes

1. a static bifurcation, if a3|E1 = 0, a1|E1 > 0 and and ∆2 > 0;

2. a Bogdanov-Takens bifurcation, if a3|E1 = a2|E1 = 0 and a1|E1 > 0;

3. a Hopf bifurcation, if ∆2 = 0, a1|E1 > 0 and a3|E1 > 0;

where ai, i = 1, 2, 3 is coefficient of the characteristic polynomial (32), and ∆2 =
a1a2 − a3 is the second Hurwitz argument.

We choose two parameters out of r, a, u, T , β and kq and show their influence
on the model behaviors through 2-dimensional bifurcation diagrams in Figures 2, 4,
and 5. Other parameter values are taken from Tables 2 and 3 in Appendix.

5.1 r vs a

We plot bifurcation diagrams to illustrate the influence of parameter values on behav-
iors of model (1). We first choose a as the control parameter and r as the bifurcation
parameter. Model (1) shows forward bifurcation when a = 2.9333 and backward
bifurcations when a = 2.9438, a = 3.11, a = 3.5, and a = 3.8. Connecting Limit
Point (LP) bifurcation points, we have a green limit point curve in Fig. 2 (a) and
(b). Connecting the neutral saddle (H) and Hopf bifurcation (H) points, we have
a Hopf curve satisfying ∆2 = 0. Further the Hopf curve denotes Hopf bifurcations
plotted in red if a3|E1 > 0, and neutral saddle plotted in magenta if a3|E1 < 0. The
sign of a3|E1 on the Hopf curve changes at Bogdanov-Takens bifurcation (BT). Hopf
bifurcation serves as an oscillation source, which induce the oscillating viral load for
our model. The stability of the bifurcating limit cycles are determined by the sign of
the first Lyapunov coefficient of the corresponding Hopf bifurcation. A positive first
Lyapunov coefficient indicates a subcritical Hopf bifurcation, which induces unstable
limit cycles; while a negative first Lyapunov coefficient implies a supercritical Hopf
bifurcation, which bifurcates stable limit cycles. The zero first Lyapunov coefficient
represent an occurrence of a generalized Hopf bifurcation (GH), which is the thresh-
old between subcritical and supercritical Hopf bifurcations. For the parameter values
of a and r, indicating the death and proliferation rates of the infected T cells, we
plot a close up 2-dimensional bifurcation diagram r vs a in a physically meaningful
ranges in Fig. 2 (b). Due to the stiffness of the system (1), numerical bifurcation
package is unable to show nice bifurcation curves. Therefore, the closeup in Fig. 2
(b) is plotted according to symbolic computation results, which are consistent with
results through Matcont. The blue curve represents branching point (BP) or tran-
scription bifurcation, which is plotted according to R0(a, r) = 1. Here R0 is the basic
reproduction number. Its analytical formula is given in (14). The red Hopf curves are
plotted according to the sufficient and necessary conditions in Theorem 5.1. The top
Hopf curve represents Hopf bifurcation because the vertical axis range is below the
BT point in Fig. 2 (a), that is a < 3.114226. Therefore, for positive a and r values,
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two parts of red Hopf curves and a blue transcritical curve enclose a parameter range
plotted in yellow, in which model (1) demonstrates oscillating viral loads.

Three parameter values of a, a = 2.9333, a = 2.9428 and a = 3.8, are picked up
in the yellow region in the closeup of Fig, 2 (b). The corresponding 1-dimensional
bifurcation diagrams are plotted in the left column of Fig. 3. Oscillations happen
between two supercritical Hopf bifurcations in Fig. 3 (a) and (b). The oscillation
peak values x are shown as well. The corresponding oscillation periods are followed
on the right panel. Large period viral load oscillation occurs around r = 0.8 for
both a = 2.9333 and a = 2.9428. For the case a = 3.8, the transcritical bifurcation
(BP) occurs at a very large r value. This means the DFE is locally stable in the
biologically meaningful region of r. Numerical simulation shows in Fig 3 (c) the
oscillation period raised from the supercritial Hopf bifurcation approaches infinity.
Due to the occurrence of BT bifurcation, the infinity period oscillation may due to the
homoclinic cycle bifurcating from the local BT bifurcation. Therefore, large period
viral load oscillation may happen around r = 3 for a = 3.8. The large oscillation
indicate HIV viral blips. The simulated viral blips are shown in Fig. 3.

Biologically, for infected T-cell population, if the proliferation (r) and death (a)
are small, the healthy T-cell load can stabilize or oscillate around a high level. The
infection progress with the increase of the infected cell proliferation rate (r), since the
healthy T-cell load either oscillates or stabilizes in a low level. While the increase of
the infected T-cell death rate shows a prohibitive effect on the disease progression.
The existence of oscillations, indicating viral blips, is of interest. An increase of the
oscillating region indicates that HIV infection is unlikely to stabilize in the AIDS
stage. Such oscillations can be discussed in terms of viral blips. Viral blips, when
large spikes in viral load occur, can be observed in HIV patients even when the patient
is on highly effective therapy and has a viral load that is unobservable. In Fig. 3 we
show model outcomes with very regular oscillatory behavior ((b) and (d)), and also
cases that more closely reflect the occurrence of viral blips ((a) and (c)) (Zhang et al,
2014). Our analysis and simulation show that the progression in the infected T-cell
proliferation and death rates could result various stages of HIV progression, including
low and high level infection, regular-oscillating level infection, and viral blips.

5.2 a vs β

The influence of the infection rate β has direct implications on HIV drug therapy. We
therefore provide an in-depth bifurcation analysis considering this parameter. Fig. 4
(a) shows the influence of parameters a and β on disease progression. The disease
can be completely eliminated if parameters locate on the right of the saddle-node
bifurcation/limit point (LP) curve in green. There is a possiblility that model (1)
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(a)

(b)

Figure 2: (a) 1-dimensional bifurcation diagram: r vs x for model (1). (b): 2-
dimensional bifurcation diagram: r vs a for model (1).
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(a)

(b)

(c)

Figure 3: 1-dimensional bifurcation diagrams with a = 2.9333, 2.9428, 3.8 day−1

are plotted in the left column of (a), (b), and (c). The corresponding period vs
bifurcation parameter r are plotted in the right column. Simulated viral blips are
shown as inserts.
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Figure 4: (a) 2-dimensional bifurcation diagram: a vs β for model (1).23



shows bistable behavior in the region bounded by the green LP curve and the blue
transcritical bifurcation/branching point (BP) curve. Hopf curve is plotted in red and
connected with a magenta curve denoting neutral saddle at a BT bifurcation point.
In the red Hopf curve, the part between BT and GH (generalized Hopf) denotes sub-
critical Hopf bifurcation, the rest of the curve denotes supercritical Hopf bifurcation.
Oscillation occurs between two Hopf curves next to each other or between Hopf and
BP curves. These two oscillation cases are further investigated. The corresponding
1-dimensional bifurcation diagrams are plotted in Fig. 4 (b) and (c) with β = 0.1
and β = 0.8, respectively..

5.3 More 2-dimensional Bifurcation Diagrams

Setting q = 1 and using β, a, kq, u and r as bifurcation parameters: we plot eight
two-dimensional bifurcation diagrams Figure 5 (1): a vs kq, (2): r vs β, (3): r vs kq,
(4): r vs u, (5): u vs a, (6): u vs kq, (7): u vs β, and (8): kq vs β. The parameter
values of r, β, a, u and kq (q = 1) are taken from Table 2, the other parameter values
are from Table 3. The positive equilibrium solution E1 are ruled by equations (3),
(7) and (34). The blue, red, magenta, and green curves denote BP, Hopf, neutral
saddle, and LP bifurcation curves. The disease can be eliminated if parameters taken
below the green LP curves in (1), (3) and (6), above in (5), and on the left in (8).
Oscillations shown when bifurcation parameters are taken between the blue and red
curves in (1), (3), (4) and (5), and within the red curves in (2), (5), (6), (7) and (8).

Since periodic solutions are of interest, both mathematically and biologically (as
they are indicative of viral blips), we chose values of r and a such that r < a,
when constant values of r and a were needed i.e., in the u vs kq, u vs β and kq vs
β parameter planes. Again, the red lines denote the Hopf bifurcation curves, the
blue lines show the transcritical bifurcation curves, the green curves are saddle node
bifurcation curves. The regions generating periodic solutions are highlighted. These
figures along with Figures 2 and 4 allow us to look at the effects of different drug
therapy and immunological interventions used to fight HIV infection in patients, with
the end goal of HIV virus eradication. In all cases we see that decreases in the infection
rate β and the virus production rate kq are needed to achieve this goal, because the
system comes to a region where the DFE is stable. These results reflect the effects
of current drug therapies, which inhibit the infection of cells (reverse transcriptase
inhibitors) and the production of infectious virus particles (protease inhibitors), that
are used in HIV drug therapy regimens. Figures 2, 4, and 5 also show that increases
in the infected cell death rate a and the virus clearance rate u, both indicators of
increased immune system function, are needed to aid HIV patients. However, we also
see that as β and kq decrease, and a and u increase the infected equilibrium moves to
a region where oscillatory solutions can occur (when r < a). We also note that such
large changes in β, kq, a and u may not be feasible.

Finally, we focus our attention on the proliferation/activation rate r and the
bifurcation diagrams: r vs a in Figure 2 (a), r vs β in Figure 5 (2), r vs kq in
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Figure 5 (3) and r vs u in Figure 5 (4) . Here, we see that to eradicate HIV within a
patient, given small changes in a, kq and β, extremely large changes in r are needed
(the slope of the blue line is very shallow). We also see, however, that as u increases,
increases in r are also needed to achieve this goal. This means that, to eradicate HIV
from a patient, the immune system must be primed to neutralize all virus particles
that are produced from newly activated latently infected cells. However, increases
in r will also affect the healthy CD4 T-cell count x since the proliferation rate of
such cells depends on the size of the infected cell population (which represents a
T-cell capacity per volume of plasma, and also immune system exhaustion if there
are a large numbers of infected cells)). Therefore, we conclude that the activation of
latently infected cells should only be considered in treatments if the immune system
is primed to eradicate virus very quickly and effectively - a high virus clearance rate
u must be achieved first.

6 Discussion

Mathematical models describing HIV infection in-host offer a way to understand the
dynamics of HIV during different disease stages. The vast majority of mathematical
studies in the literature focus on the acute and latent stages of infection, ignoring
the progression from HIV to AIDS. We have developed a mathematical model which
includes biological mechanisms that have been associated with HIV progression to
AIDS. These include: thymic involution, a reduction in T-cell production by age
of an individual, density dependent logistic growth in the CD4 T-cell population,
and the effects of the latently infected cell pool, immune system exhaustion, and
contributions of production of free virus from other cells pools.

It is currently unknown how much each of the processes listed above contribute
to the health status of the host in the progression of HIV to AIDS. In the absence
of the prior data on the problem that we are considering, we determine the most
significant parameters which can substantially change the model output behaviors
through a global uncertainty and sensitivity analysis. Statistical based Latin hyper-
cube sampling (LHS) and partial rank correlation coefficient (PRCC) are carried out
for all model parameters on clinically feasible intervals. This uncertainty and sen-
sitivity analysis narrows down the parameters which give the most influence on the
model dynamics. Bifurcation analyses are used to further examine and compare the
influence that the identified parameters applied on model output. Our results point
out the parameter regions for HIV progression stages: clearance, relapse, remission,
and recurrence. Our numerical and analytical results not only can be related to spe-
cific biological processes, but also give the relative importance of each process. Our
results reflect contributions to the productively infected CD4 T-cell pool via activa-
tion of latently infected T-cells and proliferation of productively infected CD4 T-cells
(r), production of free virus from other cell pools and/or a change in production by
productively infected CD4 T-cells (kq), and immune system exhaustion (a and u).
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Figure 5: 2-dimensional bifurcation diagrams for the model (1).
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Monocytes and dendritic cells have been implicated as HIV reservoirs using in
vitro and ex vivo models of viral infection (Coleman and Wu, 2009). Monocytes
and macrophages, after infection with HIV virus are resistant to cytopathic effects
and persist throughout the course of infection as long-term stable reservoirs for HIV-
1 which produce virus, and can disseminate the virus to tissues (Kedzierska and
Crowe, 2002). Monocytes and macrophages have also been shown to contribute to the
pathogenesis of HIV via the impairment of effector functions (Kedzierska and Crowe,
2002). Although it is known that HIV interacts with monocytes, macrophages and
dendritic cells, some key questions remain to be answered to fully understand the
pathogenesis of HIV to AIDS, including the development, persistence and activation
of the latently infected cell pool. For instance, the relative contributions of these cell
types in the development and persistence of the HIV latently infected cells reservoir,
the activation of these cells, and the individual contributions of these cells in both viral
and host aspects in the progression to AIDS remain to be elucidated. Mathematical
models explicitly including these cells lines can contribute to this area of study. Our
results confirm the importance of this mechanism in the HIV progression.

7 Appendix

Assumption Reference
x0 ∈ [600, 1400] Shete et al (2010)
R0 ∈ [1, 40] Ribeiro et al (2010)
a > r(1− x0

T
) Determined by Equation (12)

x+ y ∈ [200, 1400] 200 CD4 T-cells/µL denotes AIDS diagnosis.
Upper bound is the same as the range for x0,
for simplicity.

Table 1: Filter criteria for sensitivity and uncertainty analysis.
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Fig2(a) Fig4(a) Fig5(1) Fig5(2) Fig5(3) Fig5(4) Fig5(5) Fig5(6) Fig5(7) Fig5(8)
Para. r vs a a vs β a vs k r vs β r vs k u vs r u vs a u vs k u vs β k vs β
r – 1.065 1.065 – – – 1.22 1.22 1.22 1.22
β 0.3 – 0.3 – 0.3 0.3 0.3 0.3 – –
a – – – 2.92 2.92 2.92 – 2.943 2.943 2.943
u 13.14 13.14 13.14 13.14 13.14 – – – – 13.14
kq 3.07 3.07 – 10 – 10 10 – 10 –

Table 2: Baseline parameter values:λ = 96.8, ε = 7.7, p = 2.6, T = 1001.9 and
d = 0.016.
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